Numerical Methods

Solutions to exercises

1. Find the interpolated value at x = 2 using Lagrange interpolation of the following support points:

a.)
$$(-4, 1)$$
 and $(3, 2)$
 $p_0 = y_0 \frac{x - x_1}{x_0 - x_1} = 1 \cdot \frac{x - 3}{-4 - 3} = -\frac{1}{7}x + \frac{3}{7}$
 $p_1 = y_1 \frac{x - x_0}{x_1 - x_0} = 2 \cdot \frac{x + 4}{3 + 4} = -\frac{2}{7}x + \frac{8}{7}$
 $p(x) = p_0 + p_1 = \frac{1}{7}x + \frac{11}{7}$, so $p(2) = \frac{13}{7}$.
b.) $(-2, -2)$, $(3, -4\frac{1}{2})$, and $(1, -\frac{1}{2})$
 $p_0 = y_0 \frac{x - x_1}{x_0 - x_1} \cdot \frac{x - x_2}{x_0 - x_2} = -2 \cdot \frac{x - 3}{-2 - 3} \cdot \frac{x - 1}{-2 - 1} = -\frac{2}{15}(x - 3)(x - 1)$
 $p_1 = y_1 \frac{x - x_0}{x_1 - x_0} \cdot \frac{x - x_2}{x_1 - x_2} = -4\frac{1}{2} \cdot \frac{x + 2}{3 + 2} \cdot \frac{x - 1}{3 - 1} = -\frac{9}{20}(x + 2)(x - 1)$
 $p_2 = y_2 \frac{x - x_0}{x_2 - x_0} \cdot \frac{x - x_1}{x_2 - x_1} = -\frac{1}{2} \cdot \frac{x + 2}{1 + 2} \cdot \frac{x - 3}{1 - 3} = \frac{1}{12}(x + 2)(x - 3)$

$$p(x) = p_0 + p_1 + p_2 = \dots = -\frac{1}{2}x^2$$
, so $p(2) = -2$.

2. Using the regula falsi, approximate the root of $f(x) = x^3 - x^2 + 2$ using the initial interval [-2, 2].

Iteration 1: $c = \frac{x_0 f_1 - x_1 f_0}{f_1 - f_0} = \frac{(-2) \cdot 6 + 2 \cdot 10}{6 + 10} = \frac{1}{2}$, so $f(c) = 1\frac{7}{8}$. Iteration 2: $f(c)f(x_0) = 1\frac{7}{8} \cdot (-10) < 0$, so our new interval of search is $x_0 = -2$ and $x_1 = c = \frac{1}{2}$. The new c now is: $c = \frac{(-2)1\frac{7}{8} - \frac{1}{2} \cdot (-10)}{1\frac{7}{8} - (-10)} \approx 0.105$. Successive values for c upon iteration are approximately: $\{0.5, 0.105263, -0.24416, -0.5277, -0.72799, -0.85241, \ldots\}$. The series converges to c = -1, we need 20 iterations to obtain 5 decimals of precision.

3. Using Picard iteration approximate the root of $f(x) = x + \cos x$. Start with $x_0 = 0$.

We need to rewrite $f(x) = x + \cos x = 0$ to a form which says g(x) = x, so we need to re-work the equation to something with x on the right side:

 $\begin{array}{l} x + \cos x = 0\\ \cos x = -x\\ -\cos x = x, \ \mathrm{so} \ g(x) = -\cos x.\\ \text{The iteration scheme then is:}\\ g_0 = -\cos 0 = -1\\ g_1 = -\cos(-1) \approx -0.5403\\ g_2 = -\cos(-0.54\ldots) \approx -0.85755.\\ \text{The series converges to } \approx -0.73909. \ \text{We need 37 iterations to reach 5 decimals of precision.} \end{array}$

4. Using the Newton-Raphson method approximate the root of $f(x) = x + \cos x$. Start with $x_0 = 0$.

The same problem as 3., but now $g(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x + \cos x}{1 - \sin x}$. The iteration scheme then is: $g_0 = 0 - \frac{0+1}{1} = -1$ $g_1 = -1 - \frac{-1 + \cos - 1}{1 - \sin - 1} \approx -0.75036$.

The series converges as in ex.3, but we need only 4 iterations (instead of 37!) to reach 5 decimals of precision.

5. Using the Newton-Raphson method, find the approximation of the root of the function:

a.)
$$f(x) = \sin(x) - \cos(x)$$

Similar to ex.4, $g(x) = x - \frac{\sin x - \cos x}{\cos x + \sin x}$, $g_0 = 0 - \frac{0-1}{1+0} = 1$, etc.

- b.) $f(x) = x e^{-x}$ Similar to ex.4, $g(x) = x - \frac{x - e^{-x}}{1 + e^{-x}}$, $g_0 = 0 - \frac{0 - 1}{1 + 1} = \frac{1}{2}$, etc.
- 6. Using the first three iterations of the Newton-Raphson method, approximate $\sqrt[3]{2}$. Start with the approximation $\sqrt[3]{2} \approx 2$

First we need an equation that has $\sqrt[3]{2}$ for a root, *e.g.* $f(x) = x^3 - 2 = 0$. Then, $g(x) = x - \frac{x^3 - 2}{3x^2}$. Starting with $x_0 = 2$, we get

$$g_0 = 2 - \frac{8-2}{12} = \frac{3}{2}$$

$$g_1 = \frac{3}{2} - \frac{\frac{27}{8} - 2}{\frac{3}{4}} = \frac{35}{27}$$

$$g_2 \approx 1.261 \dots$$

The series converges to 1.259921..., which is the correct answer.