Numerical Methods

Solutions to exercises

1. Find the interpolated value at $x=2$ using Lagrange interpolation of the following support points:
a.) $(-4,1)$ and $(3,2)$

$$
p_{0}=y_{0} \frac{x-x_{1}}{x_{0}-x_{1}}=1 \cdot \frac{x-3}{-4-3}=-\frac{1}{7} x+\frac{3}{7}
$$

$$
p_{1}=y_{1} \frac{x-x_{0}}{x_{1}-x_{0}}=2 \cdot \frac{x+4}{3+4}=-\frac{2}{7} x+\frac{8}{7}
$$

$$
p(x)=p_{0}+p_{1}=\frac{1}{7} x+\frac{11}{7}, \text { so } p(2)=\frac{13}{7} .
$$

b.) $(-2,-2),\left(3,-4 \frac{1}{2}\right)$, and $\left(1,-\frac{1}{2}\right)$
$p_{0}=y_{0} \frac{x-x_{1}}{x_{0}-x_{1}} \cdot \frac{x-x_{2}}{x_{0}-x_{2}}=-2 \cdot \frac{x-3}{-2-3} \cdot \frac{x-1}{-2-1}=-\frac{2}{15}(x-3)(x-1)$
$p_{1}=y_{1} \frac{x-x_{0}}{x_{1}-x_{0}} \cdot \frac{x-x_{2}}{x_{1}-x_{2}}=-4 \frac{1}{2} \cdot \frac{x+2}{3+2} \cdot \frac{x-1}{3-1}=-\frac{9}{20}(x+2)(x-1)$
$p_{2}=y_{2} \frac{x-x_{0}}{x_{2}-x_{0}} \cdot \frac{x-x_{1}}{x_{2}-x_{1}}=-\frac{1}{2} \cdot \frac{x+2}{1+2} \cdot \frac{x-3}{1-3}=\frac{1}{12}(x+2)(x-3)$
$p(x)=p_{0}+p_{1}+p_{2}=\ldots=-\frac{1}{2} x^{2}$, so $p(2)=-2$.
2. Using the regula falsi, approximate the root of $f(x)=x^{3}-x^{2}+2$ using the initial interval $[-2,2]$.

Iteration 1: $c=\frac{x_{0} f_{1}-x_{1} f_{0}}{f_{1}-f_{0}}=\frac{(-2) \cdot 6+2 \cdot 10}{6+10}=\frac{1}{2}$, so $f(c)=1 \frac{7}{8}$.
Iteration 2: $f(c) f\left(x_{0}\right)=1 \frac{7}{8} \cdot(-10)<0$, so our new interval of search is $x_{0}=-2$ and $x_{1}=c=\frac{1}{2}$. The new c now is: $c=\frac{(-2) 1 \frac{7}{8}-\frac{1}{2} \cdot(-10)}{1 \frac{7}{8}-(-10)} \approx 0.105$.
Succesive values for c upon iteration are approximately:
$\{0.5,0.105263,-0.24416,-0.5277,-0.72799,-0.85241, \ldots\}$. The series converges to $c=-1$, we need 20 iterations to obtain 5 decimals of precision.
3. Using Picard iteration approximate the root of $f(x)=x+\cos x$. Start with $x_{0}=0$.

We need to rewrite $f(x)=x+\cos x=0$ to a form which says $g(x)=x$, so we need to re-work the equation to something with x on the right side:
$x+\cos x=0$
$\cos x=-x$
$-\cos x=x$, so $g(x)=-\cos x$.
The iteration scheme then is:
$g_{0}=-\cos 0=-1$
$g_{1}=-\cos (-1) \approx-0.5403$
$g_{2}=-\cos (-0.54 \ldots) \approx-0.85755$.
The series converges to ≈-0.73909. We need 37 iterations to reach 5 decimals of precision.
4. Using the Newton-Raphson method approximate the root of $f(x)=x+\cos x$. Start with $x_{0}=0$.

The same problem as 3 ., but now $g(x)=x-\frac{f(x)}{f^{\prime}(x)}=x-\frac{x+\cos x}{1-\sin x}$. The iteration scheme then is:
$g_{0}=0-\frac{0+1}{1}=-1$
$g_{1}=-1-\frac{1-1+\cos -1}{1-\sin -1} \approx-0.75036$.
The series converges as in ex.3, but we need only 4 iterations (instead of $37!$) to reach 5 decimals of precision.
5. Using the Newton-Raphson method, find the approximation of the root of the function:
a.) $f(x)=\sin (x)-\cos (x)$

Similar to ex.4, $g(x)=x-\frac{\sin x-\cos x}{\cos x+\sin x}, g_{0}=0-\frac{0-1}{1+0}=1$, etc.
b.) $f(x)=x-e^{-x}$

Similar to ex.4, $g(x)=x-\frac{x-e^{-x}}{1+e^{-x}}, g_{0}=0-\frac{0-1}{1+1}=\frac{1}{2}$, etc.
6. Using the first three iterations of the Newton-Raphson method, approximate $\sqrt[3]{2}$. Start with the approximation $\sqrt[3]{2} \approx 2$
First we need an equation that has $\sqrt[3]{2}$ for a root, e.g. $f(x)=x^{3}-2=0$. Then, $g(x)=x-\frac{x^{3}-2}{3 x^{2}}$. Starting with $x_{0}=2$, we get
$g_{0}=2-\frac{8-2}{12}=\frac{3}{2}$
$g_{1}=\frac{3}{2}-\frac{\frac{27}{8}-2}{3 \cdot \frac{9}{4}}=\frac{35}{27}$
$g_{2} \approx 1.261 \ldots$
The series converges to $1.259921 \ldots$, which is the correct answer.

